PRODUCTION OF FREE RADICALS FROM PHENOL AND TOCOPHEROL BY BLEOMYCIN-IRON(II) COMPLEX

Yukio Sugiura

Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto 606, Japan Received February 23, 1979

Summary: Oxygen-bubbling of 1:1 bleomycin(BLM)-Fe(II) complex efficiently generates hydroxy radical which is inhibited by catalase. Hydroxy radical produced from BLM-Fe(II)- 0_2 system oxidizes 2,6-di-tert-butyl-p-cresol and α -tocopherol to form the corresponding phenoxy and tocopheroxyl radicals, respectively. These free radicals were identified by the ESR hyperfine structures.

Introduction

BIM binds to and cleavages DNA in a reaction that depends on the presence of ferrous ion and molecular oxygen. In the DNA degradation by BIM, ferric ion and anaerobiosis cannot replace ferrous ion and aerobiosis, respectively. Divalent metal ions, Cu(II), Zn(II), and Co(II), inhibit BIM induced damage to DNA. The breakage of DNA is also inhibited by chelating agents such as deferoxamine and EDTA. In addition, it has been that reducing agents 4 and superoxide radical stimulate DNA degradation reaction by BIM. These observations strongly suggest that reactive free radicals such as 0_2^{-7} and OH may be responsible for oxidative cleavage of DNA by BIM. Recently, the production of oxygen radicals in BIM-Fe(II) complex system was detected by ESR spin trapping technique. 6,7 However, oxidative reaction of organic substances by free radicals generated from BIM-Fe(II) complex has never been investigated. This paper has described that hydroxy radical produced from BIM-Fe(II)-02 system attacks phenol and tocopherol to form the corresponding phenoxy and tocopheroxyl radicals, respectively.

Experimental

BLM-A $_2$ purified was a gift from Nippon Kayaku Co. Ltd. DL- α -Tocopherol and catalase (bovine liver; 3000 units/mg) were obtained from Sigma Company. DMPO and 2,6-di-tert-

Abbreviations used: BLM, bleomycin; ESR, electron spin resonance; DMPO, 5,5-dimethyl-1-pyroline-N-oxide; EDTA, ethylenediaminetetraacetic acid; DNA, deoxyribonucleic acid

butyl-p-cresol were purchased from Aldrich Chemical Company, and DMPO was purified by filtration with charcoal.

The reaction mixture for spin trapping consisted of 1:1 BLM-Fe(II) complex(0.5 mM; aqueous solution of pH 6.9) and DMPO(0.05 M; ethanol solution). Oxygen was bubbled through the reaction mixture for 5 seconds, and then an aliquot of the sample solution was rapidly transferred to a quartz flat cell for ESR examination. Free radicals produced from 2,6-ditert-butyl-p-cresol or tocopherol by BLM-Fe(II) complex were also detected by the same procedure, except for the replacement of DMPO by the phenol or tocopherol. X-Band ESR measurements were made using a JES-FE-3X spectrometer equipped with 100 KH_z field modulation at 20°.

Results and Discussion

The spectrum of Figure 1A, which has 1:2:2:1 quartet pattern, $\mathbf{a}^{N} = \mathbf{a}_{\beta}^{H} = 15.2$ G, and g=2.0058, is characteristic of hydroxy radical adduct of LMPO. 8 In addition, this reaction was strongly inhibited by catalase which is scavenger of $\mathbf{H}_{2}\mathbf{0}_{2}$ (see Figure 1B).

The experimental result of DMPO spin trapping shows efficient production of \cdot OH radical by oxygen-bubbling of 1:1 BLM-Fe(II) complex, consistent with the previous reports. ^{6,7} On the basis of the present result, the previous ESR studies of BLM-Fe complex, and spin trapping using N-tert-butyl- α -phenylnitrone, ⁶ it is proposed that superoxide and hydroxy radicals are produced during the reversible redox reaction of the 1:1 BLM-Fe complex as follows:

Buettner and Oberley have reported that the $0_2^{\frac{1}{2}}$ spin adduct of DMPO is considerably unstable $(T_{1/2}=35 \text{ sec at pH 8}).^{10}$ In xanthine-xanthine oxidase system as a superoxide generating system, Lai and Piette also detected a weak ESR signal of the -OH radical adduct of DMPO, suggesting that $0_2^{\frac{1}{2}}$ is converted into -OH. 11

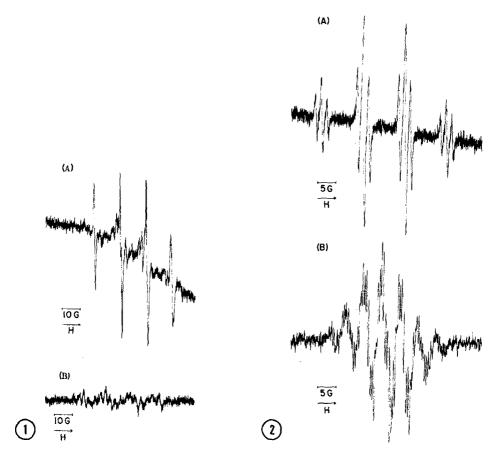


Figure 1 ESR spectra of DMPO spin adduct produced by BLM-Fe(II) complex

- (A) 0.5 mM BLM-Fe(II) complex and 0.05 M DMPO; and
- (B) 0.5 mM BLM-Fe(II) complex, 5 mg catalase, and 0.05 M DMPO

Conditions of ESR spectroscopy: microwave power, 10 mW; modulation amplitude, 0.5 G; and time constant, 0.03 sec.

Figure 2 ESR spectra of free radicals from 2,6-di-tert-butyl-p-cresol and α-tocopherol produced by BIM-Fe(II) complex

(A) 0.5 mM BIM-Fe(II) complex and 0.05 M 2,6-di-tert-butyl-p-cresol; and (B) 0.5 mM BIM-Fe(II) complex and 0.05 M α-tocopherol
Conditions of ESR spectroscopy: microwave power, 10 mW; modulation amplitude, 0.5 G(A) and 0.2 G(B); and time constant, 0.03 sec.

Figure 2 shows the ESR spectra for radicals formed by oxidation with BLM-Fe(II) complex system of 2,6-di-tert-butyl-p-cresol and DL- α -tocopherol. The free radical from 2,6-di-tert-butyl-p-cresol is identified to the corresponding phenoxy radical by means of the hyperfine structure of quartet of triplets and g-value(g=2.0053)(see Figure 2A). The quartet splitting

(1:3:3:1) is clearly associated with the three hydrogen atoms of the para-methyl group, and the triplet splitting(1:2:1) with meta-ring hydrogen atoms.

$$tBu \xrightarrow{OH} tBu \xrightarrow{BLM-Fe(II)} tBu \xrightarrow{O} tBu$$

The hydrogen interaction constants were 10.8 G for para-methyl protons and 1.7 G for metaring protons.

On the other hand, the radical from α -tocopherol is typical of α -tocopheroxyl free radical. The seven splittings observed in Figure 2B are from the six approximately equivalent C-2 and C-6 methyl protons, and each of these lines is split by the C-3 methyl and C-5 methylene protons.

$$\begin{array}{c|c} H_3C & OH & CH_3 \\ H_3C & CH_2 & BIM-Fe(II) \\ H_3C & CH_2R & O_2 & H_3C & CH_2R \\ \end{array}$$

The hydrogen interaction constants and g-value were estimated to be 5.5 G(C-methyl protons), 4.6 G(C-6 methyl), 0.8 G(C-3 methyl and C-5 methylene), and g=2.0052. In fact, these values correspond well to those of the phenoxy radical from 2,4-di-tert-butyl-5,6-di-methyl-phenol (ortho-methyl protons=5.4 G and meta-methyl protons=1.3 G).

Ferrous ion and molecular oxygen serve as a specific cofactor in the cleavage of DNA by BIM. Therefore, evidence presented in this report suggests that the ·OH radical produced by BIM-Fe(II)-O₂ complex system is also responsible for the degradation of DNA by BIM. The formation of malondialdehyde as a product of BIM-DNA reaction, ¹³ which requires a C-C bond cleavage in deoxyribose, may be produced by the attack of reactive ·OH radical at the 4' position of a deoxyribose in DNA.

Acknowledgment Gtatitude is due to Prof. H. Umezawa for kind encouragement and Dr. T. Takita, Prof. K. Ishizu, and Prof. H. Tanaka for pertinent advice.

References

1. Takeshita, M., Grollman, A.P., Ohtsubo, E., and Ohtsubo, H. (1978) Proc. Natl. Acad. Sci. US 75, 5983-5987.

- 2. Sausville, E.A., Stein, R.W., Peisach, J., and Horwitz, S.B. (1978) Biochemistry 17, 2746 2754.
- 3. Sausville, E.A., Peisach, J., and Horwitz, S.B. (1978) Biochemistry 17, 2740-2745.
- 4. Takeshita, M., Horwitz, S.B., and Grollman, A.P. (1974) Virology 60, 455-465.
- 5. Ishida, R. and Takahashi, T. (1975) Biochem. Biophys. Res. Commun. 66, 1432-1438.
- 6. Sugiura, Y. and Kikuchi, T. (1978) J. Antibiot. 31, 1310-1312.
- 7. Oberley, L.W. and Buettner, G.R. (1979) FEBS Lett. 97, 47-49.
- 8. Harbour, J.R., Chow, V., and Bolton, J.R. (1974) Can. J. Chem. 52, 3549-3553.
- 9. Sehested, K., Rasmussen, O.L., and Fricke, H. (1968) J. Phys. Chem. 72, 626-631.
- 10. Buettner, G.R. and Oberley, L.W. (1978) Biochem. Biophys. Res. Commun. 83, 69-74.
- 11. Lai, C-S. and Piette, L.H. (1978) Arch. Biochem. Biophys. 190, 27-38.
- 12. Becconsall, J.K., Clough, S., and Scott, G. (1960) Trans Far. Soc. 60, 459-472.
- 13. Kuo, M.T. and Haidle, C.W. (1974) Biochim. Biophys. Acta 335, 109-114.